Seasonal change in the capacity for supercooling by neonatal painted turtles.

نویسندگان

  • G C Packard
  • M J Packard
  • L L McDaniel
چکیده

Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this chan...

متن کامل

Seasonal changes in physiology and development of cold hardiness in the hatchling painted turtle Chrysemys picta.

Hatchling painted turtles (Chrysemys picta) commonly hibernate in shallow, natal nests where winter temperatures may fall below -10 degrees C. Although hatchlings are moderately freeze-tolerant, they apparently rely on supercooling to survive exposure to severe cold. We investigated seasonal changes in physiology and in the development of supercooling capacity and resistance to inoculative free...

متن کامل

Soil hydric characteristics and environmental ice nuclei influence supercooling capacity of hatchling painted turtles Chrysemys picta.

Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative...

متن کامل

Cold-Tolerance of Hatchling Painted Turtles (Chrysemys picta bellii) from the Southern Limit of Distribution

Painted turtles (Chrysemys picta) have a natural history unlike that of other chelonians from the northern United States and southern Canada. Although neonates of other freshwater turtles usually emerge from their subterranean nests in late summer or autumn and move to nearby marshes, lakes, or streams to spend their first winter, hatchling painted turtles typically remain inside their shallow ...

متن کامل

Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?

Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 204 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2001